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Abstract—Puberty is an important period during develop-
ment hallmarked by increases in sex steroid levels. Human
neuroimaging studies have consistently reported that in typ-
ically developing pubertal children, cortical and subcortical
gray matter is decreasing, whereas white matter increases
well into adulthood. From animal studies it has become clear
that sex steroids are capable of influencing brain organiza-
tion, both during the prenatal period as well as during other
periods characterized by massive sex steroid changes such
as puberty. Here we review structural neuroimaging studies
and show that the changes in sex steroids availability during
puberty and adolescence might trigger a period of structural
reorganization of grey and white matter in the developing
human brain.
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Puberty represents an important period during develop-
ment, forming the basis of the biological transition from a
non-reproductive state into a reproductive state (Nussey et
al., 2001). Puberty is associated with major endocrinolog-
ical changes, such as a vast increase in the sex steroids
testosterone and estradiol released from the gonads. Sex
steroids are in turn responsible for the typical development
of secondary sexual characteristics, such as breast devel-
opment, pubic hair, and testicle growth (Marshall and Tan-
ner, 1969, 1970). At the behavioral level, pubertal matura-
tion is associated with increased sensation seeking and
impulsivity (Forbes and Dahl, 2010), even after controlling
for general effects of age (Steinberg et al., 2008). Children
entering puberty also rapidly advance in abstract reason-
ing, cognitive control, and goal-directed behavior (for re-
views see Casey et al., 2005; Yurgelun-Todd, 2007;
Spear, 2010). Furthermore, they show development of risk
evaluation (Crone and van der Molen, 2007) and develop
complex social skills like understanding others’ emotions
and mental states (Blakemore, 2008; Dahl and Gunnar,
2009). Despite the advances in many cognitive functions,
adolescence is also a time of rapidly shifting risks for
psychopathology, which emerge differently in males and
females (Paus et al., 2008) and have in some cases been
linked to pubertal stage rather than age (Angold et al.,
1998).

In the last two decades, an increasing number of stud-
ies have examined the neural changes occurring during
development, as well as the neural correlates which are
associated with the behavioral changes during puberty and
adolescence (reviewed by Paus, 2005; Durston and
Casey, 2006; Blakemore et al., 2010). Pioneering studies
reported an initial wave of synaptic overproduction that
takes place in childhood, which is followed by selective
synaptic elimination during puberty and adolescence (Hut-
tenlocher et al., 1994). This process most likely reflects the
elimination of neuronal connections, rather than pro-
grammed cell death (Huttenlocher, 1990). In contrast, my-
elination of axons continues during this period (Yakovlev et
al., 1967). These findings from early postmortem work
are supported by magnetic resonance imaging (MRI)
studies investigating gray and white matter volumes and
white matter microstructure (Giedd et al., 1999; Gogtay
et al., 2004; Giedd and Rapoport, 2010; Giorgio et al.,
2010; Tamnes et al., 2010); for recent reviews see
(Giedd and Rapoport, 2010; Schmithorst and Yuan,

2010). Using functional neuroimaging, prior studies
ts reserved.

mailto:j.s.peper@fsw.leidenuniv.nl


2

b

l
t
b
s
b

m
e
i

p
t
r
b
s
t
s

b
w
e
l
t
s
I
a
o
t
E

J. S. Peper et al. / Neuroscience 191 (2011) 28–37 29
have suggested that puberty is characterized by imma-
ture prefrontal activity (involved in cognitive control and
goal-directed behavior) in combination with enhanced
activation in subcortical areas such as the striatum and
amygdala (among others implicated in encoding the af-
fective valence of stimuli (Somerville et al., 2010)), in
comparison to adults (Ernst et al., 2005; Galvan et al.,

007; Luna et al., 2010; Van Leijenhorst et al., 2010a,b).
These studies demonstrate that brains of children in
puberty (and adolescence) are subjected to intricate and
widespread anatomical and functional changes. An im-
portant question that comes to mind is to what extent
pubertal hormones play a role in affecting brain structure
in this critical developmental period.

Traditionally, two types of hormonal action on the brain
have been distinguished (Phoenix et al., 1959): (i) organi-
zational effects; that is, steroids act on the CNS to organize
neural pathways, which are irreversible and (ii) Activational
effects: that is, hormonal stimulation act on neural path-
ways to activate certain behaviors (for critical reviews
see e.g. Arnold and Breedlove, 1985; Arnold, 2009a;
McCarthy, 2010). In humans, a critical period for organiza-
tional effects of testosterone on brain structure is thought to
e between week 8 and 24 of gestation (Collaer and Hines,

1995). Besides the prenatal period, fluctuations in hor-
monal levels at later stages of life might affect brain tissue
as well (Pilgrim and Hutchison, 1994), blurring the distinc-
tion between perinatal and pubertal sex steroid effects.
Indeed, it has been put forward that puberty, a period
characterized by neural development, is a sensitive period
for gonadal steroids to organize the brain (Romeo, 2003;
Sisk and Zehr, 2005; Ahmed et al., 2008; Schulz et al.,
2009). Animal studies have, for instance, shown that rats
castrated before puberty have a greater number of andro-
gen receptor cells in the amygdala than rats that have
been castrated after puberty (Romeo et al., 2000). Further-
more, prepubertal gonadectomy resulted in a reduction of
cells within sexually dimorphic areas of the hypothalamus
and amygdala (Ahmed et al., 2008). Also, during puberty
pruning of dendrites and spines, in combination with ax-
onal changes have been observed within the medial
amygdala (Zehr et al., 2006; Cooke et al., 2007). In addi-
tion, androgen administration to pubertal rats induced an
increase in neuronal spine density within the amygdala
and hippocampus (Cunningham et al., 2007). It is impor-
tant to also consider differences between the sexes, as
boys and girls do not only differ dramatically in pubertal
timing and sex-steroid profile (Grumbach et al., 2003), but
also show distinct responses to changing levels of sex
steroids. For example, work on rodents pointed out that
neurogenesis within the male hippocampus was affected
by endogenous testosterone fluctuations, whereas only
female brains were responsive to oestradiol changes (Ga-
ea, 2008). This indicates that there is a complex interac-
ion between sex and sex steroid hormones with respect to
rain organizational processes: male and female brains
eem to respond differentially to the impact of rising pu-

ertal hormones. a
In humans, to what extent brain structure is organized
by sex steroids remains largely unknown. Here, we review
neuroimaging studies to examine the association between
brain structure and sex steroid production of pubertal and
adolescent boys and girls.

EXPERIMENTAL PROCEDURES

A PubMed indexed search was carried out with a limitation of
human studies using the following keywords: (sex steroids) OR
(gonadal hormones) OR (testosterone) OR (estradiol) OR (pro-
gesterone) AND (white matter) OR (gray matter) OR (brain devel-
opment) OR (myelin). Only papers written in English were in-
cluded, as well as studies using direct measures of sex hormonal
levels (e.g. no sex differences). Case studies or qualitative studies
were excluded, as well as studies on sex chromosomal or hor-
monal abnormalities.

RESULTS

Gray matter

MRI-based gray matter is assumed to be comprised of
neuronal cell bodies, dendrites, non-myelinated axons,
and glial cells. Although the trajectory of change varies
across brain regions, there is increasing consensus on the
overall pattern of gray matter development over the course
of childhood and adolescence: in childhood a global in-
crease of cortical and subcortical gray matter volume takes
place, peaking around the onset of puberty, which is then
followed by a gradual decrease in adolescence and early
adulthood (for recent reviews see Giedd and Rapoport,
2010; Gogtay and Thompson, 2010). Interestingly, maxi-
mal gray matter volume in frontal and parietal brain areas
in girls is reached 1–2 years before boys (Lenroot et al.,
2007), paralleling the sex difference in puberty-onset (girls
enter puberty on average 1–2 years before boys (Dele-

arre-van de Waal, 2002)). These findings provide indirect
vidence that pubertal hormones influence brain structure

n a sex-specific way.
A new area of research attempts to directly relate

ubertal measures, including sex steroid hormones, to
ypical brain development during this phase of life. With
espect to gray matter, studies show different associations
etween sex hormones and cortical areas than between
ex hormones and subcortical areas. Moreover, the pat-
ern of associations between sex hormones and brain
tructure is different for boys and girls.

In a sample of 10-to-15-year old boys and girls (Ta-
le 1), associations between gray matter density of the
hole brain and testosterone and estradiol levels were
xamined (Peper et al., 2009a). In both sexes, estradiol

evels were determined in first morning urine and tes-
osterone levels were established in saliva on two con-
ecutive days at the same time directly after waking up.
t was found that higher levels of estradiol in girls were
ssociated with decreased gray matter densities in the
rbitofrontal cortex, supramarginal, and angular gyri of

he parietal lobe and middle temporal gyrus (Fig. 1).
stradiol-related gray matter increases were also found,

lbeit less pronounced than estradiol-related decreases,
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in the middle frontal gyrus, the inferior temporal gyrus
and the middle occipital gyrus (Peper et al., 2009a).

hese estradiol-related gray matter changes were found
n top of overall age-related gray matter decreases. In
oys, estradiol and testosterone levels were not related
o changes in brain structures, nor were testosterone
evels in girls.

The interrelations between sex steroid hormones (in
erum) and gray matter areas have also been investigated
n an, on average, slightly younger sample of 8–15 year
ld boys and girls (Neufang et al., 2009). A larger

Table 1. Main findings of studies discussed in the paper

Authors Sex Age n TS

Perrin et al. (2008) M 15.1 (1.9) 204 3.5 (0.9)
F 15.3 (2.0) 204 4.2 (0.7)

Peper et al. (2008) M 9.2 (0.1) 57 1.1 (0.3)
F 9.2 (0.1) 47 1.2 (0.5)

eufang et al. (2009) M 11.7 (2.3) 15 2.6 (1.3)
F 10.9 (2.1) 15 2.1 (1.5)

eper et al. (2009a) M 11.7 (1.0) 37 1.6 (0.7)
F 12.1 (1.2) 41 2.9 (1.1)

eper et al. (2009b) M 9.2 (0.1) 96 1.1 (0.3)
F 9.2 (0.1) 99 1.2 (0.5)

ramen et al. (2011) M 12.9 (0.7) 32 2.9 (0.9)
F 12.0 (0.7) 48 3.2 (1.2)

aus et al. (2010) M See Perrin et al. (2008)
F

aznahan et al. (2010) M 14.6 (3.5)a 153 NA
F 14.3 (3.5)a 131 NA

Peper et al. (2010) M See Peper et al. (2009a)
F

Asato et al. (2010) M�Fb 15.5 (4.5) 112 1–2: 28 (13 F

3–4: 49 (28 F
(5) 35 (22 F)

AG, angular gyrus; AR, androgen receptor; E, estradiol; F, females;
nferior frontal gyrus; IPG, inferior parietal gyrus; ITG, interior tempora

ammilary bodies; MFG, middle frontal gyrus; MTG, middle temporal
upramarginal gyrus; T, testosterone; TS, Tanner stage (NB. This is
re-puberty, to 5, fully mature) (Marshall and Tanner, 1969, 1970); W

a Mean age at 1, 2, 3 or 4 scans (age distribution between all scans: 8
for males and females separately, and mean pubertal stage is not pro
phases).

Fig. 1. Estradiol and gray matter decrease in pubertal girls. The fi
voxel-based morphometry) in girls (n�35) between 10 and 15 years, co
frontal and angular gyri. Critical level of significance is t��4.6 (��0.

(FDR)). Adapted from Peper et al. (2009a), reprinted with permission).
mygdala and hippocampus volume were related to in-
reased levels of testosterone in both sexes. In girls only,

ncreased levels of estrogen were associated with in-
reased parahippocampal and uncal gray matter. In boys,
igher levels of testosterone were related to larger dien-
ephalic brain structures, such as the hypothalamus and
ammilary bodies (Fig. 2) (Neufang et al., 2009). These
uthors speculated that the increase in circulating levels of
ormones might parallel a volume increase within the in-
olved structures like the hypothalamus and the pituitary
land suggesting a bidirectional relationship between cir-

n findings

T¡ �WM whole brain (mainly in HF AR-gene)
not associated with WM

F: �LH¡ �WM whole brain
F: �LH¡ �WM density in cingulum, MTG and splenium
F: �T¡ �GM amygdala and hippocampus

T¡ �GM hypothalamus and mam. bodies
E¡ �GM parahippocampus and uncus
E ¡ �GM OFC, SupM, AG, MTG
E ¡ �GM MFG, ITG, OCC

F: T not associated with GM or WM
S-yes versus TS-no: GM decrease in frontal and parietal areas

TS¡ �GM whole cortex
T¡ �GM whole cortex and amygdala

AR-gene better predicts age-related WM increase than LF AR-gene.

F AR-gene¡ attenuation of cortical thickness in IPG
F AR-gene¡ increased loss of cortical thickness in IFG
FSH¡ �pituitary volume

F: �TS¡ �Integrity of WM within fronto-temporal and cortico-
bcortical connections

icle stimulating hormone; GM, gray matter; HF, high functioning; IFG,
F, low functioning; LH, luteinizing hormone; M, males; mam. bodies,
, not available; OCC, occipital lobe; OFC, orbitofrontal cortex; SupM,
ge measure of genital and pubic hair development (ranging from 1,
matter.
rs), b Asato et al. (2010) do not report mean ages and puberty stages
groups (the number of participants is given in three different pubertal

icts estradiol-related gray matter density decrease (measured with
or age. (A) Bilateral superior- and left orbitofrontal gyri, (B) right inferior
cted for multiple comparisons according to the False Discovery Rate
Mai

M: �

F: T
M�

M�

M�

M: �

F: �

F: �

F: �

M�

F: T

F: �

F: �

HF

M: H
F: H
F: �

)b M�
su

)

FSH, foll
l gyrus; L
gyrus; NA
an avera
M, white
–22.8 yea
vided for
gure dep
rrected f

05, corre
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culating hormonal levels and brain structure/function in
these particular brain regions.

In an attempt to investigate whether a larger volume of
the hypothalamus and/or pituitary gland (i.e. the two brain
areas in the HPG-axis) is indeed implicated in increased
pubertal hormone production, these volumes were manu-
ally segmented on MRI scans and correlated with LH,
FSH, estradiol, and testosterone levels (Peper et al.,
2010). It was found that only pituitary gland volume (not
hypothalamic volumes) was significantly associated with
hormonal levels. After correcting for age, a larger pituitary
gland was associated with higher FSH levels in girls only
(Peper et al., 2010). Thus, the direct relationship between
increased pubertal hormone production and structures
within the HPG-axis could not readily be established (using
MRI). Other hormones produced from the pituitary gland,
and increasing with pubertal maturation, such as cortico-
tropin (ACTH) (Netherton et al., 2004), thyroid stimulating
hormone (TSH), growth hormone (GH), and oxytocin (Tran
et al., 2004), might play an important role in this process.

Although no hormone levels were measured directly,
the influence of pubertal stage was investigated in gray
matter density in a 9-year-old sample (Peper et al., 2009b).
Girls with the first external signs of puberty were compared
to girls without any signs of secondary sexual characteris-
tics (SSCs). SSCs captured both gonadal as well as adre-
nal maturation, since a combined variable was created
based on breast development (ovarian hormones) and
pubic hair development (adrenal hormones). It was found
that early pubertal girls had less gray matter density in
prefrontal and parietal brain areas compared to non-pu-
bertal girls (Peper et al., 2009b). These data provide a lead
that the possible process of pruning in frontal and parietal
regions (Giedd et al., 1999; Sowell et al., 2001; Paus,
2005) might be initiated by the onset of puberty.

Recent evidence from (Bramen et al., 2011) supports
this hypothesis in a sample where, next to a physical
examination of SSCs, plasma testosterone levels were

Fig. 2. Testosterone and estradiol and gray matter volume in boys an
year old boys (n�15) and girls (n�15) resulting from whole-brain regr
comparisons at P�0.05 on cluster level, and overlaid on a mean st
estosterone (TEST) effects, blue color negative TEST effects, and re
reprinted with permission).
determined. In their study, boys and girls were matched on
pubertal stage rather than age, in order to better interpret
sex differences in brain maturation. It is well known that
girls advance into puberty earlier than boys, thus, when
boys and girls are age-matched, the sample will contain an
overrepresentation of pubertal stage more advanced in
girls compared to boys. After correcting for age, they found
that more advanced pubertal stage predicted gray matter
decreases. Moreover, adolescent girls with higher levels of
testosterone had smaller right amygdala volumes and
smaller bilateral cortical gray matter than adolescents girls
of the same age with lower levels of testosterone (Bramen
et al., 2011), although these correlations were partly de-
pendent on age. The associations between gray matter
volumes and testosterone level were not present in boys.

The question then arises what causes gray matter
changes at puberty-onset, given that there is so much
individual variability. Several lines of research argue that
the functioning of (variants of) the androgen receptor (AR)
gene is important for the neurobehavioral manifestation of
androgen effects in primates (for review see: Wallen,
2005). Genetic variants of the AR-gene were found to play
a role in adolescent gray matter development, as was
recently reported by (Raznahan et al., 2010). The AR
contains a polymorphic trinucleotide (CAG)-repeat in exon
1, whose length modulates AR action: a smaller number of
CAG repeats within the AR-gene was associated with
higher basal levels of testosterone (Brum et al., 2005). In a
longitudinal study on pubertal and adolescent subjects,
Raznahan et al., 2010 reported that a greater AR-effi-
ciency (i.e. a smaller number of CAG-repeats) in males
was specifically associated with a more “masculine” pat-
tern of cortical maturation (i.e. attenuation of loss) in the
inferior parietal cortex (involved in visuospatial skills Pol-
drack, 2002). Greater androgen receptor efficiency in fe-
males was associated with a more masculine pattern of
cortical maturation (i.e. increase of loss) in the left inferior
frontal gyrus (involved in response inhibition; Aron et al.,

pact of circulating steroid levels on gray matter volumes across 8–15
alyses, thresholded at P�0.001 on voxel level, corrected for multiple

mage of the sex-specific group. Turquoise color represents positive
ositive estradiol (EST) effects on GM volumes. (Neufang et al., 2009,
d girls. Im
ession an
ructural i
d color p
2004).
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To summarize, both circulating sex steroid levels as
ell as the androgen receptor gene seem to play a role in

egulating gray matter development during puberty and
dolescence. Overall, decreased cortical gray matter
eems to be related to increased levels of estradiol in girls
nd to increased levels of testosterone in boys.

It is well known that changes in gray matter do not
ccur independently of their connecting white matter bun-
les. Therefore, the association between sex steroids and
hite matter will now be considered.

hite matter

RI-based white matter is thought to consist of myelinated
xons. Myelin is an insulating substance created by glial
ells that is responsible for the tissue’s white appearance.
he presence of a myelin membrane around the axon

mproves signal transduction (Sherman and Brophy,
005). Histological studies pointed out that myelination of
xons persists well into early adulthood (Yakovlev et al.,
967; Huttenlocher, 1990). These post-mortem studies
ave been replicated by structural neuroimaging work,
howing an increase of white matter volume (Paus et al.,
001) and white matter integrity (Asato et al., 2010) with
evelopment (for recent reviews see Paus, 2010; Schmith-
rst and Yuan, 2010). During adolescence, white matter
rowth follows a remarkably different trajectory in girls and
oys; it increases with age slightly in girls and steeply in
oys (De Bellis et al., 2001; Lenroot et al., 2007; Perrin et
l., 2009). These studies again provide indirect evidence
hat pubertal hormones influence brain structure in a sex-
pecific way.

Only a limited number of human studies address the
ssociation between pubertal hormones and white matter
evelopment. Among the first studies is work from Perrin et
l., 2008. In a large sample of adolescents between 12 and
8 years, they found that increased levels of testosterone
redicted whole brain white matter volume increase in
oys, but not in girls. The strength of the association
etween white matter volume and testosterone depended
n the type of AR polymorphism: boys with relatively short
ariants exhibited a stronger association between testos-
erone level and white matter volume (Perrin et al., 2008).
oreover, the functional polymorphism in AR modulated
ge-related increase in relative white matter volume in
oys (Paus et al., 2010). This finding is comparable to
aznahan et al., 2010, who reported that the AR gene
odulates gray matter decreases in male adolescents.

Before sex steroids are produced from the gonads, in
he earliest stage of puberty the pituitary gland produces
onadotropins FSH and LH. Especially nocturnal peaks of
H—being released in a pulsatile manner—can be used
s early endocrinological markers of puberty in both boys
nd girls (Delemarre-van de Waal et al., 1991). Impor-
antly, it has been shown that LH can cross the blood-brain
arrier (Lukacs et al., 1995) and LH receptors have been
ound in various brain areas (Lei et al., 1993). In a sample
f 9-year old twins we examined LH levels in relation to
hite matter (Peper et al., 2008). LH was measured in first

orning urine samples using highly sensitive immunomet-
ic assays. This method allows researchers to detect noc-
urnal rises in LH level that mark the beginning of puberty,
ven 1–2 years before serum levels of sex steroids in-
rease or secondary sexual characteristics of puberty are
resent (Demir et al., 1996). It was found that an increased
roduction of LH in both sexes was associated with larger
lobal white matter, corrected for intracranial volume. This
ssociation could not be due to general age-related ef-
ects, since all participants were 9 years of age during MRI
nd hormonal measurements. Regionally, increased LH-

evels were associated with larger white matter density
ithin the splenium of the corpus callosum, middle tempo-

al gyri, and the cingulum (Peper et al., 2008). Strikingly,
hese areas in white matter were previously found to de-
elop fastest in children between 9 and 13 years, com-
ared to younger and older children (Thompson et al.,
000). Indeed, in a recent study using Diffusion Tensor
maging (DTI; assumed to measure white matter micro-
tructure), higher integrity of white matter connections be-
ween frontal and temporal regions and between frontal
nd subcortical regions was related to more advanced
ubertal stage (based on secondary sexual characteris-

ics) (Asato et al., 2010). These findings are consistent
ith the idea that pubertal hormones may influence
rganization of white matter pathways between (or
ithin) the frontal and temporal cortices.

We can only speculate whether LH directly affects
hite matter, or via another related mechanism such as

he production of sex steroids. It has, for instance, been
ound that astrocyte plasticity in the hypothalamus affects
H-surges in rats (Cashion et al., 2003), suggesting that
H-production is directly related to morphological pro-
esses in the brain. Alternatively, the observed effect of LH
ight be an indirect result of sex steroids, being the end
roducts of the HPG-axis. Indeed, myelination of axons in
he splenium is affected by manipulating levels of estrogen
s demonstrated in pubertal rats (Yates and Juraska,
008).

In summary, the association between white matter and
ubertal hormones has only been examined in a relatively
mall number of studies. These findings are consistent
ith the idea that testosterone (in boys) and its precursor
H (in both sexes) may influence puberty-related in-
reases in global white matter and regional white matter
rowth in areas connecting the frontal and temporal lobes.
hese findings may also support the notion that connec-

ions between brain regions involved in cognitive control,
xecutive functioning, and socio-emotional processing
ontinue to develop along with pubertal maturation.

DISCUSSION

We reviewed associations between sex steroids and brain
structure in pubertal boys and girls, measured with neuro-
imaging. Overall, testosterone, estradiol as well as their
precursor LH were associated with dynamic brain changes
in this period. In particular, typical gray matter decreases in
prefrontal, parietal, and temporal cortices taking place dur-

ing puberty and adolescence (Giedd et al., 1999; Sowell et
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al., 2002; Gogtay et al., 2004; Bramen et al., 2011; Zier-
mans et al., in press), were found to be related to in-
creased levels of estradiol in girls and to increased levels
of testosterone in boys. Subcortical gray matter areas
showing a significant relationship with increasing sex ste-
roid hormones during pubertal development included the
hypothalamus, thalamus, amygdale, and (para)hippocam-
pus, areas known for their high density of sex steroid
receptors (Simerly et al., 1990) and for their implication in
social cognition and emotional processing (LeDoux, 1993;
Fuster, 2008; Hermans et al., 2008). The association be-
tween pubertal development (as a proxy for sex hormonal
production) and medial temporal structures such as the
hippocampus and amygdala depended on sex as well: a
positive association was found with the amygdala in boys
and a negative association with the hippocampus in girls.

The relationship between white matter and sex ste-
roids during puberty and adolescence has only been in-
vestigated in a limited number of studies. Overall, testos-
terone (boys) as well as its precursor LH (both sexes)
could predict white matter increases in the whole brain and
in areas connecting the (pre) frontal and temporal cortices.
Interestingly, maturation of the prefrontal cortex and (me-
dial) temporal lobes, as well as their connecting fibers have
been implicated in typical adolescent behaviors including
development of social skills, enhanced reward sensitivity
and reduced cognitive control (Blakemore, 2008; Berns et
al., 2009; Olson et al., 2009; Van Leijenhorst et al.,
2010a,b).

Pubertal and adolescent restructuring of the brain is
thought to reflect adaptational processes to adulthood.
Based on the highly dynamic neuronal processes during
puberty and adolescence it can be proposed that brain
development in this phase of life is of critical importance to
how the adult brain will ultimately function. A widely ad-
opted view is that perhaps the ‘blueprint’ of synapses and
neuronal connections created during pre/neonatal life is
being fine-tuned in this period. In other words, connections
that are not used will be eliminated (Zehr et al., 2006).
Identifying brain areas and their interconnected white mat-
ter pathways which show a particular association with sex
steroids during human puberty and adolescence, provides
important insights into neurobiological underpinnings of
normal and abnormal adolescent brain development. For
example, it might help to explain why several neuropsychi-
atric disorders such as (but not limited to) depression,
anxiety disorders, schizophrenia, and eating disorders
have their onset during this period (Kessler et al., 2005;
Paus et al., 2008; Kuhn et al., 2010) and why these disor-
ders often display a sex-specific prevalence or course of
the illness (Westberg and Eriksson, 2008; Martel et al.,
2009). Recently, the role of pubertal maturation in adoles-
cent (social) behavior has been extensively reviewed
(Forbes and Dahl, 2010). From their review it becomes
clear that sexual maturation plays a role in social and
affective processing, however, studies directly relating sex
steroid levels to typical adolescent behavior and brain
functioning are still limited. For instance, enhanced puber-

tal maturation and testosterone levels have been associ-
ated with less activation in the striatum and more activation
of the medial PFC in response to winning a monetary
reward (Forbes et al., 2010).

Limitations and future challenges

Not all studies were able to reveal a relationship between
testosterone and focal gray matter structure in girls (Peper
et al., 2009a) or boys (Peper et al., 2009a; Bramen et al.,
2011). This could be due to a number of factors. For
example, structural MRI with its current resolution may not
yet be able to properly capture sex-steroid effects on brain
structure. Furthermore, relatively young subjects might
have had rather low levels of circulating testosterone,
which were possibly insufficient to induce an effect on
regional gray or white matter. Or, conversely, the ‘condi-
tion’ of the brain at a certain time-point during development
could have determined the impact that sex steroids have
on neuronal parameters: possibly, that ‘critical’ time-point
had not been reached yet. Another explanation for null
findings with respect to testosterone levels and brain struc-
ture might be related to genetic make-up. Recent studies
indicate that testosterone-related effects on gray and white
matter are affected by the genetic variant of the androgen
receptor gene, with the most effective polymorphism ex-
plaining a stronger relationship between hormone levels
and brain changes (Perrin et al., 2008; Paus et al., 2010;
Raznahan et al., 2010). Possibly, an (unintentional) selec-
tion bias in genetic make-up could have masked some of
the results. With respect to genetic effects, it should fur-
thermore be mentioned that sex chromosomes exert im-
portant effects on brain organizational processes (even
before the gonadal organs are active) (Arnold, 2009b) and
different dosages of sex chromosome genes affect brain
development also (for review see: Lenroot et al., 2009).
Furthermore, brain structure and brain structural changes
(Peper et al., 2007, 2009b; Brans et al., 2010) as well as
sex hormone levels (Hoekstra et al., 2006; Kuijper et al.,
2007) have been found to be (highly) heritable based on
studies in twins. Although studies are ongoing to disentan-
gle to which extent the genetic contribution to brain struc-
ture and sex steroid hormone production may overlap,
non-hormone related genetic influences and environmen-
tal factors evidently exert their effects on brain structure
throughout life.

In both sexes testosterone is (partly) metabolized into
estradiol (Collaer and Hines, 1995). So even in boys,
levels of estradiol might actually explain a substantial part
of the variance in gray and white matter (although Peper et
al., 2009a did not find evidence for this). Moreover, andro-
gens produced from the adrenal gland such as dehydro-
epiandrosterone (DHEA) or DHEA-sulfate (Garcia-Segura,
2009; Yadid et al., 2010), might contribute to brain orga-
nizational processes.

It remains to be investigated whether hormonal
changes during puberty and adolescence are causally in-
volved in these brain maturational processes. Much of
what is known about the effects of sex steroids and brain
plasticity is derived from animal research (Garcia-Segura,

2009), in which levels of hormones can be experimentally
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manipulated. Evidently, such manipulations in (healthy)
humans are not possible and studies reviewed here re-
main of correlational nature. Also, whether pubertal hor-
mones directly affect gray and white matter development,
or whether other factors are involved remains unclear. As
mentioned earlier, evidence is starting to accumulate that
steroid-linked genes play an important role in human pu-
bertal brain development (Perrin et al., 2008; Paus et al.,
2010; Raznahan et al., 2010). Moreover, from animal stud-
ies it has become clear that glial cells, responsible for
myelin production, are also capable of regulating steroid
hormone secretion (glial steroidogenesis) (Garcia-Segura
and Melcangi, 2006). Speculatively, this might imply that
certain brain morphological processes, such as myelina-
tion, are required for appropriate pubertal steroid secre-
tion. Evidently, based on these reciprocal functions be-
tween endocrinological and brain morphological pro-
cesses, it is complicated to specify the source of the
reported associations between pubertal brain structure
and sex steroid levels.

When designing studies around this topic, several
other methodological issues should be taken into account.
One example is hormonal fluctuations within circadian or
monthly cycles, such as the menstrual cycle. A way to
possibly overcome this issue could be by investigating
(female) subjects at the same time and the same day
during their cycle. Neufang et al., 2009 successfully ap-
plied this approach, by investigating post-menarchal girls
within their follicular phase. On the other hand, especially
in early puberty, this can pose a problem since girls do not
experience a regular cycle yet. One of the reasons why
studying brain structure during the pubertal period is valu-
able is because of the naturally increasing levels of sex
steroids. It is nonetheless difficult to dissociate general
age-related effects on the brain from effects purely related
to sex steroid hormones. Although in the majority of papers
discussed here hormonal levels seemed to explain more
variance in brain structure than age alone, the associations
between sex steroid levels and brain structure mostly did
not survive a stringent age-correction. Most samples, ex-
cept for (Raznahan et al., 2010), measured hormonal and
brain maturation cross-sectionally; longitudinal designs are
needed to estimate hormonal and brain changes within
individuals over time.

Another methodological issue that needs to be consid-
ered when interpreting the current results concerns differ-
ent types of hormonal measurements, for example, from
saliva or from plasma. Testosterone levels derived from
saliva are highly correlated with testosterone levels deter-
mined in plasma, with correlation coefficients�0.83 (Butler
et al., 1989; Ohzeki et al., 1991; Rilling et al., 1996).
However, the biologically active fraction of testosterone
(i.e. unbound by sex hormone binding globulin (SHGB)) is
thought to be represented better by saliva than by plasma,
whereas plasma testosterone more clearly distinguishes
between different stages of genital development in puberty
(Rilling et al., 1996). Although steroid levels determined
from saliva or from blood plasma are highly correlated, the

direct comparison between levels is complicated. At least
from a practical point of view, it can be argued that non-
invasive measurements of hormonal levels (i.e. saliva) in
healthy pubertal children are preferred.

Finally, data described in this mini-review have made
use of different ways for quantifying gray matter estimates,
that is, gray matter volume (Neufang et al., 2009; Bramen
et al., 2011), gray matter density (Peper et al., 2009a) or
cortical thickness (Raznahan et al., 2010). Each type of
assessment has its advantages (for discussions see Im et
al., 2008; Panizzon et al., 2009), but direct comparisons
between different kinds of gray matter measurements can-
not easily be made.

CONCLUSION

It can be concluded that the changes in sex steroids avail-
ability during puberty and adolescence might be involved
in triggering a period of structural reorganization of grey
and white matter in the developing human brain. Although
causal conclusions cannot be drawn from human studies,
it can be acknowledged that studying the contribution of
sex steroids to the dynamically changing brain during pu-
berty and adolescence is an exciting new field of research.
It can provide us with important insights into specific brain
structures that are susceptible to changing hormonal mi-
lieus. Ultimately, identifying brain areas that are related to
sex hormones might also help to better understand the
etiology of neuropsychiatric disorders with typical sex dif-
ferences in prevalence rates, such as depression, anxiety
disorders, eating disorders, schizophrenia or attention def-
icit hyperactivity disorder (Kessler et al., 2005; Cahill,
2006; Paus et al., 2008).
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